273 research outputs found

    Magnetic domain-twin boundary interactions in Ni-Mn-Ga

    Get PDF
    The stress required for the propagation of twin boundaries in a sample with fine twins increases monotonically with ongoing deformation. In contrast, for samples with a single twin boundary, the stress exhibits a plateau over the entire twinning deformation range. We evaluate the twin boundary and magnetic domain boundary interactions for increasing twin densities. As the twinned regions get finer, these interaction regions result in additional magnetic domains that form magnetoelastic defects with high magnetostress concentrations. These magnetoelastic defects act as obstacles for twinning disconnections and, thus, harden the material. Whereas in a low twin density microstructure, these high-energy concentrations are absent or dilute and their effectiveness is reduced by the synergistic action of many twinning disconnections. Therefore, with increasing twin density, the interaction of twin boundary and magnetic domain boundaries reduces the twin boundary mobility. The defect strength has a distribution such that twinning disconnections overcome soft obstacles first and harder obstacles with ongoing deformation. The width of the distribution of obstacle strength and the density of obstacles increase with increasing twin density and, thus, the hardening coefficient increases with increasing twin density

    The role of well-child visits in detecting developmental delay in preschool children

    Full text link
    Background: Early detection of developmental delay (DD) in preschool children is crucial for counselling parents, initiating diagnostic work-up, and starting early intervention (EI). Methods: We conducted a register study of all preschool children referred for EI in the Canton of Zurich, Switzerland, in 2017 (N = 1,785) and used an online survey among primary care physicians (PCPs, N = 271) to evaluate the care service of DD children. Results: PCPs accounted for 79.5% of all referrals by physicians and had correctly referred over 90% of the children in need of EI at an average age of 39.3 months (SD 8.9). In the survey, which represents 59.2% of all pediatricians and 11.3% of all general practitioners in the Canton, PCPs reported performing a mean of 13.5 (range 0-50, SD 10.7) well-child visits per week to preschool children and estimated well-child visits to be the most frequent type of consultation (66.7%) for the identification of DD. Parents' hesitancy in accepting further evaluation or support were reported by 88.7%. Conclusions: Most preschool children with DD are identified in well-child visits. These visits represent an ideal opportunity for early detection of developmental impairment and initiation of EI. Carefully addressing parents' reservations could reduce the rate of refusal, thus improving early support for children with DD

    A large ungated TPC with GEM amplification

    Get PDF
    A Time Projection Chamber (TPC) is an ideal device for the detection of charged particle tracks in a large volume covering a solid angle of almost . The high density of hits on a given particle track facilitates the task of pattern recognition in a high-occupancy environment and in addition provides particle identification by measuring the specific energy loss for each track. For these reasons, TPCs with Multiwire Proportional Chamber (MWPC) amplification have been and are widely used in experiments recording heavy-ion collisions. A significant drawback, however, is the large dead time of the order of 1 ms per event generated by the use of a gating grid, which is mandatory to prevent ions created in the amplification region from drifting back into the drift volume, where they would severely distort the drift path of subsequent tracks. For experiments with higher event rates this concept of a conventional TPC operating with a triggered gating grid can therefore not be applied without a significant loss of data. A continuous readout of the signals is the more appropriate way of operation. This, however, constitutes a change of paradigm with considerable challenges to be met concerning the amplification region, the design and bandwidth of the readout electronics, and the data handling. A mandatory prerequisite for such an operation is a sufficiently good suppression of the ion backflow from the avalanche region, which otherwise limits the tracking and particle identification capabilities of such a detector. Gas Electron Multipliers (GEM) are a promising candidate to combine excellent spatial resolution with an intrinsic suppression of ions. In this paper we describe the design, construction and the commissioning of a large TPC with GEM amplification and without gating grid (GEM-TPC). The design requirements have driven innovations in the construction of a light-weight field-cage, a supporting media flange, the GEM amplification and the readout system, which are presented in this paper. We further describe the support infrastructure such as gas, cooling and slow control. Finally, we report on the operation of the GEM-TPC in the FOPI experiment, and describe the calibration procedures which are applied to achieve the design performance of the device.Peer reviewe

    Low bone mass in microscopic colitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microscopic colitis presents with similar symptoms to classic inflammatory bowel diseases. Osteoporosis is a common complication of Crohn's disease but there are no data concerning bone metabolism in microscopic colitis.</p> <p>Aims</p> <p>The aim of the present study was to evaluate bone density and metabolism in patients with microscopic colitis.</p> <p>Methods</p> <p>Fourteen patients microscopic colitis were included in the study, and 28 healthy persons and 28 age and gender matched Crohn's disease patients were enrolled as controls. Bone mineral density was measured using dual x-ray absorptiometry at the lumbar spine, femoral neck and the radius. Serum bone formation and bone resorption markers (osteocalcin and beta-crosslaps, respectively) were measured using immunoassays.</p> <p>Results</p> <p>Low bone mass was measured in 57.14% patients with microscopic colitis. Bone mineral density at the femoral neck in patients suffering from microscopic colitis and Crohn's disease was lower than in healthy controls (0.852 ± 0.165 and 0.807 ± 0.136 vs. 1.056 ± 0.126 g/cm<sup>2</sup>; p < 0.01). Bone mineral density at the non-dominant radius was decreased in microscopic colitis patients (0.565 ± 0.093 vs. 0.667 ± 0.072 g/cm<sup>2</sup>; p < 0.05) but unaffected in Crohn's disease patients (0.672 ± 0.056 g/cm<sup>2</sup>). Mean beta-crosslaps concentration was higher in microscopic colitis and Crohn's disease patients than controls (417.714 ± 250.37 and 466.071 ± 249.96 vs. 264.75 ± 138.65 pg/ml; p < 0.05). A negative correlation between beta-crosslaps concentration and the femoral and radius t-scores was evident in microscopic colitis patients.</p> <p>Conclusions</p> <p>Low bone mass is frequent in microscopic colitis, and alterations to bone metabolism are similar to those present in Crohn's disease. Therefore, microscopic colitis-associated osteopenia could be a significant problem in such patients.</p

    The Plastid Genome of Eutreptiella Provides a Window into the Process of Secondary Endosymbiosis of Plastid in Euglenids

    Get PDF
    Euglenids are a group of protists that comprises species with diverse feeding modes. One distinct and diversified clade of euglenids is photoautotrophic, and its members bear green secondary plastids. In this paper we present the plastid genome of the euglenid Eutreptiella, which we assembled from 454 sequencing of Eutreptiella gDNA. Comparison of this genome and the only other available plastid genomes of photosynthetic euglenid, Euglena gracilis, revealed that they contain a virtually identical set of 57 protein coding genes, 24 genes fewer than the genome of Pyramimonas parkeae, the closest extant algal relative of the euglenid plastid. Searching within the transcriptomes of Euglena and Eutreptiella showed that 6 of the missing genes were transferred to the nucleus of the euglenid host while 18 have been probably lost completely. Euglena and Eutreptiella represent the deepest bifurcation in the photosynthetic clade, and therefore all these gene transfers and losses must have happened before the last common ancestor of all known photosynthetic euglenids. After the split of Euglena and Eutreptiella only one additional gene loss took place. The conservation of gene content in the two lineages of euglenids is in contrast to the variability of gene order and intron counts, which diversified dramatically. Our results show that the early secondary plastid of euglenids was much more susceptible to gene losses and endosymbiotic gene transfers than the established plastid, which is surprisingly resistant to changes in gene content

    Molecular and Electrophysiological Characterization of GFP-Expressing CA1 Interneurons in GAD65-GFP Mice

    Get PDF
    The use of transgenic mice in which subtypes of neurons are labeled with a fluorescent protein has greatly facilitated modern neuroscience research. GAD65-GFP mice, which have GABAergic interneurons labeled with GFP, are widely used in many research laboratories, although the properties of the labeled cells have not been studied in detail. Here we investigate these cells in the hippocampal area CA1 and show that they constitute ∼20% of interneurons in this area. The majority of them expresses either reelin (70±2%) or vasoactive intestinal peptide (VIP; 15±2%), while expression of parvalbumin and somatostatin is virtually absent. This strongly suggests they originate from the caudal, and not the medial, ganglionic eminence. GFP-labeled interneurons can be subdivided according to the (partially overlapping) expression of neuropeptide Y (42±3%), cholecystokinin (25±3%), calbindin (20±2%) or calretinin (20±2%). Most of these subtypes (with the exception of calretinin-expressing interneurons) target the dendrites of CA1 pyramidal cells. GFP-labeled interneurons mostly show delayed onset of firing around threshold, and regular firing with moderate frequency adaptation at more depolarized potentials

    Dual alpha2C/5HT1A receptor agonist allyphenyline induces gastroprotection and inhibits fundic and colonic contractility

    Get PDF
    Allyphenyline, a novel α2-adrenoceptor (AR) ligand, has been shown to selectively activate α2C-adrenoceptors (AR) and 5HT1A receptors, but also to behave as a neutral antagonist of α2A-ARs. We exploited this unique pharmacological profile to analyze the role of α2C-ARs and 5HT1A receptors in the regulation of gastric mucosal integrity and gastrointestinal motility

    Differences in iNOS and Arginase Expression and Activity in the Macrophages of Rats Are Responsible for the Resistance against T. gondii Infection

    Get PDF
    Toxoplasma gondii infects humans and warm blooded animals causing devastating disease worldwide. It has long been a mystery as to why the peritoneal macrophages of rats are naturally resistant to T. gondii infection while those of mice are not. Here, we report that high expression levels and activity of inducible nitric oxide synthase (iNOS) and low levels of arginase-1 (Arg 1) activity in the peritoneal macrophages of rats are responsible for their resistance against T. gondii infection, due to high nitric oxide and low polyamines within these cells. The opposite situation was observed in the peritoneal macrophages of mice. This discovery of the opposing functions of iNOS and Arg 1 in rodent peritoneal macrophages may lead to a better understanding of the resistance mechanisms of mammals, particularly humans and livestock, against T. gondii and other intracellular pathogens
    corecore